Standardized treatment planning methodology for passively scattered proton craniospinal irradiation
نویسندگان
چکیده
BACKGROUND As the number of proton therapy centers increases, so does the need for studies which compare proton treatments between institutions and with photon therapy. However, results of such studies are highly dependent on target volume definition and treatment planning techniques. Thus, standardized methods of treatment planning are needed, particularly for proton treatment planning, in which special consideration is paid to the depth and sharp distal fall-off of the proton distribution. This study presents and evaluates a standardized method of proton treatment planning for craniospinal irradiation (CSI). METHODS We applied our institution's planning methodology for proton CSI, at the time of the study, to an anatomically diverse population of 18 pediatric patients. We evaluated our dosimetric results for the population as a whole and for the two subgroups having two different age-specific target volumes using the minimum, maximum, and mean dose values in 10 organs (i.e., the spinal cord, brain, eyes, lenses, esophagus, lungs, kidneys, thyroid, heart, and liver). We also report isodose distributions and dose-volume histograms (DVH) for 2 representative patients. Additionally we report population-averaged DVHs for various organs. RESULTS The planning methodology here describes various techniques used to achieve normal tissue sparing. In particular, we found pronounced dose reductions in three radiosensitive organs (i.e., eyes, esophagus, and thyroid) which were identified for optimization. Mean doses to the thyroid, eyes, and esophagus were 0.2%, 69% and 0.2%, respectively, of the prescribed dose. In four organs not specifically identified for optimization (i.e., lungs, liver, kidneys, and heart) we found that organs lateral to the treatment field (lungs and kidneys) received relatively low mean doses (less than 8% of the prescribed dose), whereas the heart and liver, organs distal to the treatment field, received less than 1% of the prescribed dose. CONCLUSIONS This study described and evaluated a standardized method for proton treatment planning for CSI. Overall, the standardized planning methodology yielded consistently high quality treatment plans and perhaps most importantly, it did so for an anatomically diverse patient population.
منابع مشابه
The risk of developing a second cancer after receiving craniospinal proton irradiation.
The purpose of this work was to compare the risk of developing a second cancer after craniospinal irradiation using photon versus proton radiotherapy by means of simulation studies designed to account for the effects of neutron exposures. Craniospinal irradiation of a male phantom was calculated for passively-scattered and scanned-beam proton treatment units. Organ doses were estimated from tre...
متن کاملComparison of therapeutic dosimetric data from passively scattered proton and photon craniospinal irradiations for medulloblastoma
BACKGROUND For many decades, the standard of care radiotherapy regimen for medulloblastoma has been photon (megavoltage x-rays) craniospinal irradiation (CSI). The late effects associated with CSI are well-documented in the literature and are in-part attributed to unwanted dose to healthy tissue. Recently, there is growing interest in using proton therapy for CSI in pediatric and adolescent pat...
متن کاملTechnique for sparing previously irradiated critical normal structures in salvage proton craniospinal irradiation
BACKGROUND Cranial reirradiation is clinically appropriate in some cases but cumulative radiation dose to critical normal structures remains a practical concern. The authors developed a simple technique in 3D conformal proton craniospinal irradiation (CSI) to block organs at risk (OAR) while minimizing underdosing of adjacent target brain tissue. METHODS Two clinical cases illustrate the use ...
متن کاملEvaluation of Dose Calculation Accuracy of Isogray Treatment Planning System in Craniospinal Radiotherapy
Introduction: Craniospinal radiotherapy is a therapeutic technique for central nervous system (CNS) tumors, which requires meticulous attention to technique and dosimetry.Treatment planning system (TPS) is one of the main equipment in radiotherapy; therefore, the evaluation of its accuracy is essential for dose calculation. The present study evaluates the validity of Isogray TPS in craniospinal...
متن کاملCraniospinal Irradiation in Medulloblastoma using High Energy Medical Linear Accelerator: an Innovative Approach to Planning Technique
Background: Craniospinal irradiation (CSI) of medulloblastoma poses technological challenges due to the involvement of large treatment volume. Commonly, the whole treatment length is covered with two different isocentric plans in which the junction is shifted after every five fractions to overcome the possibility of hot and cold spot.Objective: This study aims to evaluate dosimetrically and cli...
متن کامل